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A CONJECTURE OF WATKINS FOR QUADRATIC TWISTS

JOSE A. ESPARZA-LOZANO AND HECTOR PASTEN

Abstract. Watkins conjectured that for an elliptic curve E over Q of Mordell-Weil rank r, the
modular degree of E is divisible by 2r. If E has non-trivial rational 2-torsion, we prove the conjecture
for all the quadratic twists of E by squarefree integers with sufficiently many prime factors.

1. Ranks and modular degree

For an elliptic curve E over Q of conductor N , the modularity theorem [25, 23, 4] gives a non-
constant morphism φE : X0(N) → E defined over Q where X0(N) is the modular curve associated
to the congruence subgroup Γ0(N) ⊆ SL2(Z). We assume that φE has minimal degree and that it
maps the cusp i∞ to the neutral point of E. These requirements uniquely determine φE up to sign.
The modular degree of E is mE = degφE and it has profound arithmetic relevance; for instance,
polynomial bounds for its size in terms of N are essentially equivalent to the abc conjecture [11, 17].

The 2-adic valuation is denoted by v2. Motivated by numerical data, Watkins [24] conjectured
that v2(mE) for an elliptic curve E is closely related to the Mordell-Weil rank of E over Q.

Conjecture 1.1 (Watkins). For every elliptic curve E over Q we have rankE(Q) ≤ v2(mE).

Dummigan [8] showed that part of the conjecture would follow from strong R = T conjectures.
Also, large part of Watkins’ conjecture is proved for elliptic curves of odd modular degree [5, 26,
12, 13], although it is not known whether there exist infinitely many elliptic curves of this kind [21].

The goal of this note is to prove Watkins’ conjecture unconditionally in several new cases. Let
us introduce some notation. For an elliptic curve E and a fundamental (quadratic) discriminant

D, the quadratic twist of E by D is denoted by E(D). The Manin constant of E is denoted by cE
(cf. Section 2.3). The number of distinct prime factors of an integer n is ω(n).

Theorem 1.2. Let E be an elliptic curve over Q of conductor N with non-trivial rational 2-
torsion. Assume that E has minimal conductor among its quadratic twists. If D is a fundamental

discriminant with ω(D) ≥ 6 + 5ω(N)− v2(mE/c
2
E), then Watkins’ conjecture holds for E(D).

The quantity 6+ 5ω(N)− v2(mE/c
2
E) is effectively computable and it can be read from existing

tables of elliptic curves when N is not too large, see for instance [14].
For a positive integer A, it is a standard result of analytic number theory that the number of

positive integers n up to x having ω(n) ≤ A is O(x(log log x)A−1/ log x). We deduce:

Corollary 1.3. Let E be an elliptic curve over Q with non-trivial rational 2-torsion. There is an

effective constant κ(E) depending only on E such that the number of fundamental discriminants D

with |D| ≤ x such that Watkins’ conjecture fails for E(D) is bounded by O
(

x(log log x)κ(E)/ log x
)

.

Let us remark that in the cases where we prove Watkins’ conjecture our argument actually shows
that v2(mE(D)) bounds the 2-Selmer rank, which is a stronger version of Watkins’ conjecture.
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2. Preliminaries

2.1. Faltings height. Let E be an elliptic curve over Q. We denote by ωE a global Neron dif-
ferential for E; it is unique up to sign. The Faltings height of E (over Q) is defined as certain
Arakelov degree [10], which in our case takes the simpler form [19]

(2.1) h(E) = −
1

2
log

(

i

2

∫

E(C)
ωE ∧ ωE

)

.

Ramanujan’s cusp form is ∆(z) = q
∏∞

n=1(1 − qn)24 where q = exp(2πiz), defined on the upper
half plane h = {z ∈ C : ℑ(z) > 0}. The modular j-function is normalized as j(z) = q−1 + 744 + ...

The global minimal discriminant of E is denoted by ∆E. If τE ∈ h satisfies that j(τE) is the
j-invariant of E, then the Faltings height admits the expression [22, 19]

(2.2) h(E) =
1

12

(

log |∆E| − log
∣

∣∆(τE)ℑ(τE)
6
∣

∣

)

− log(2π).

Given elliptic curves E1, E2 over Q, let us define δ(E1, E2) = exp(2h(E1)− 2h(E2)).

Lemma 2.1 (Variation of h(E) under quadratic twist). Let E1 be an elliptic curve over Q and let E2

be a quadratic twist of E1. Then δ(E1, E2) is a rational number and it satisfies |v2(δ(E1, E2))| ≤ 3.

Proof. We use (2.2) for both E1 and E2. The elliptic curves are isomorphic over C, so we can take

τE1 = τE2 which gives δ(E1, E2) = |∆E1/∆E2 |
1/6. The result follows from explicit formulas for the

variation of the minimal discriminant under quadratic twists, cf. Proposition 2.4 in [18]. �

2.2. Petersson norm. For a positive integer N , let S2(N) be the space of weight 2 cuspidal
holomorphic modular forms for the congruence subgroup Γ0(N) acting on h. Given f ∈ S2(N), its
Fourier expansion is f(z) = a1(f)q + a2(f)q

2 + ... where q = exp(2πiz) and the numbers an(f) are
the Fourier coefficients of f . The Petersson norm of f relative to Γ0(N) is defined by

‖f‖N =

(

∫

Γ0(N)\h
|f(z)|2dx ∧ dy

)1/2

, z = x+ iy ∈ h.

The norm depends on the choice of N in the following sense: If N |M and f ∈ S2(N), then we
certainly have f ∈ S2(M), and ‖f‖2M = [Γ0(N) : Γ0(M)] · ‖f‖2N .

We need some additional notation. For an elliptic curve E over Q of conductor N we denote
by fE ∈ S2(N) the Hecke newform attached to E by the modularity theorem, normalized by
a1(fE) = 1. The modular form fE is characterized by the following property: If p is a prime
of good reduction for E and we define ap(E) = p + 1 − #E(Fp), then ap(fE) = ap(E). For a
fundamental discriminant D, let P(D,N) be the set of primes p with p|D and p ∤ 2N .

Lemma 2.2 (Variation of the Petersson norm under quadratic twist). Let E be an elliptic curve

over Q and let D be a fundamental discriminant. Let N and N (D) be the conductors of E and E(D)

respectively, and assume that N |N (D). Then ‖fE(D)‖2N(D)/‖fE‖
2
N ∈ Q× and we have

v2(‖fE(D)‖2N(D)/‖fE‖
2
N ) + 1 ≥

∑

p∈P(D,N)

v2 ((p− 1)(p + 1− ap(E))(p + 1 + ap(E))) .

Proof. The quadratic Dirichlet character attached to D has conductor |D|. The result follows from
the precise formula given in Theorem 1 of [7] when one only keeps the contribution of p = 2 and
the primes p ∈ P(D,N) —the product of the latter primes is denoted by D1 in loc. cit. �

We remark that the terms (p− 1)(p+ 1− ap(E))(p+ 1 + ap(E)) have a clear conceptual origin;

they come from Euler factors of the imprimitive symmetric square L-function L(Sym2fE, s) that
are removed by twisting, and L(Sym2fE, 2) is (up to a mild factor) equal to ‖fE‖

2
N . See [27, 7, 24].
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2.3. Manin constant. Given an elliptic curve E over Q of conductor N , we have that φ∗
EωE is a

regular differential on X0(N) = Γ0(N)\h ∪ {cusps}. More precisely

(2.3) φ∗
EωE = 2πicEfE(z)dz

where cE is a rational number uniquely defined up to sign. We assume that the signs of φE and
ωE are chosen such that cE > 0. It follows from (2.1) and (2.3) that (cf. [22, 19])

(2.4) mE = 4π2c2E‖fE‖
2
N exp(2h(E)).

The quantity cE is called the Manin constant, and a fundamental fact is

Lemma 2.3 (cf. [9]). The Manin constant cE is an integer.

We recall that Manin [15] conjectured that if E is a strong Weil curve in the sense that mE is
minimal within the isogeny class of E, then cE = 1. See [16, 3, 2, 6] and the references therein.

3. Consequences for Watkins’ conjecture

Lemma 3.1. Let E be an elliptic curve over Q of conductor N and suppose that E has minimal

conductor among its quadratic twists. Let D be a fundamental discriminant. Then

v2(mE(D)) ≥ v2(mE/c
2
E)− 4 +

∑

p∈P(D,N)

v2 ((p− 1)(p + 1− ap(E))(p + 1 + ap(E))) .

Proof. Applying (2.4) to E and E(D) we find

mE(D)

mE
=

c2
E(D)

c2E
·
‖fE(D)‖2N(D)

‖fE‖
2
N

· δ(E(D), E).

The result follows from lemmas 2.1, 2.2, and 2.3. �

Proposition 3.2. Let E be an elliptic curve over Q of conductor N with non-trivial rational

2-torsion and suppose that E has minimal conductor among its quadratic twists. Let D be a fun-

damental discriminant. We have v2(mE(D)) ≥ 3ω(D) + v2(mE/c
2
E)− (7 + 3ω(N)).

Proof. As E(Q)[2] is non-trivial and it maps injectively into E(Fp) for every prime p ∤ 2N , we have
p + 1 ≡ ap(E) mod 2 for these primes. We get v2(mE(D)) ≥ v2(mE/c

2
E)− 4 + 3 ·#P(D,N) from

Lemma 3.1, and the result follows from #P(D,N) ≥ ω(D)− ω(2N) ≥ ω(D)− ω(N)− 1. �

The following upper bound for the Mordell-Weil rank is standard and it comes from a bound for
a 2-isogeny Selmer rank (cf. Section X.4 in [20]; see also [1]).

Lemma 3.3. Let E be an elliptic curve over Q of conductor N with non-trivial rational 2-torsion.
Then rankE(Q) ≤ 2ω(N)− 1.

Proof of Theorem 1.2. Since E(D)[2] ≃ E[2] as Galois modules and E has non-trivial rational 2-

torsion, we can use Lemma 3.3 for E(D), which gives

rankE(D)(Q) ≤ 2ω(N (D))− 1 ≤ 2(ω(D) + ω(N))− 1.

If Watkins’ conjecture fails for E(D), then Proposition 3.2 would give

2(ω(D) + ω(N))− 1 ≥ v2(mE(D)) + 1 ≥ 3ω(D) + v2(mE/c
2
E)− 6− 3ω(N).

This is not possible when ω(D) ≥ 6 + 5ω(N)− v2(mE/c
2
E). �
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